Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes.
نویسندگان
چکیده
Pairs of Au nanoparticles have recently been proposed as "plasmon rulers" based on the dependence of their light scattering on the interparticle distance. Preliminary work has suggested that plasmon rulers can be used to measure and monitor dynamic distance changes over the 1- to 100-nm length scale in biology. Here, we substantiate that plasmon rulers can be used to measure dynamical biophysical processes by applying the ruler to a system that has been investigated extensively by using ensemble kinetic measurements: the cleavage of DNA by the restriction enzyme EcoRV. Temporal resolutions of up to 240 Hz were obtained, and the end-to-end extension of up to 1,000 individual dsDNA enzyme substrates could be simultaneously monitored for hours. The kinetic parameters extracted from our single-molecule cleavage trajectories agree well with values obtained in bulk through other methods and confirm well known features of the cleavage process, such as DNA bending before cleavage. Previously unreported dynamical information is revealed as well, for instance, the degree of softening of the DNA just before cleavage. The unlimited lifetime, high temporal resolution, and high signal/noise ratio make the plasmon ruler a unique tool for studying macromolecular assemblies and conformational changes at the single-molecule level.
منابع مشابه
Construction of a Synthetic Vector for Preparation of a 100 Base Pair DNA Ladder
DNA size markers are widely used to estimate the size of DNA samples on agarose or polyacrylamide gelelectrophoresis (PAGE). DNA markers can be prepared by mixing PCR products with definite sizes.Alternatively, they are prepared by restriction enzyme digestion of the genomic DNA of bacteriophages ornatural and synthetic DNA plasmids. The present study describes engineering of ...
متن کاملTension-dependent DNA cleavage by restriction endonucleases: two-site enzymes are "switched off" at low force.
DNA looping occurs in many important protein-DNA interactions, including those regulating replication, transcription, and recombination. Recent theoretical studies predict that tension of only a few piconewtons acting on DNA would almost completely inhibit DNA looping. Here, we study restriction endonucleases that require interaction at two separated sites for efficient cleavage. Using optical ...
متن کاملReactions of BglI and other type II restriction endonucleases with discontinuous recognition sites.
Type II restriction enzymes generally recognize continuous sequences of 4-8 consecutive base pairs on DNA, but some recognize discontinuous sites where the specified sequence is interrupted by a defined length of nonspecific DNA. To date, a mechanism has been established for only one type II endonuclease with a discontinuous site, SfiI at GGCCNNNNNGGCC (where N is any base). In contrast to orth...
متن کاملOn the possibilities and limitations of rational protein design to expand the specificity of restriction enzymes: a case study employing EcoRV as the target.
The restriction endonuclease EcoRV has been characterized in structural and functional terms in great detail. Based on this detailed information we employed a structure-guided approach to engineer variants of EcoRV that should be able to discriminate between differently flanked EcoRV recognition sites. In crystal structures of EcoRV complexed with d(CGGGATATCCC)(2) and d(AAAGATATCTT)(2), Lys104...
متن کاملDNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway
Type II restriction endonucleases protect bacteria against phage infections by cleaving recognition sites on foreign double-stranded DNA (dsDNA) with extraordinary specificity. This capability arises primarily from large conformational changes in enzyme and/or DNA upon target sequence recognition. In order to elucidate the connection between the mechanics and the chemistry of DNA recognition an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 8 شماره
صفحات -
تاریخ انتشار 2007